Affiliation:
1. MIRALab, University of Montreal
2. Swiss Federal Institute of Technology
Abstract
This paper addresses the problem of simulating deformations between objects and the hand of a synthetic character during a grasping process. A numerical method based on finite element theory allows us to take into account the active forces of the fingers on the object and the reactive forces of the object on the fingers. The method improves control of synthetic human behavior in a task level animation system because it provides information about the environment of a synthetic human and so can be compared to the sense of touch. Finite element theory currently used in engineering seems one of the best approaches for modeling both elastic and plastic deformation of objects, as well as shocks with or without penetration between deformable objects. We show that intrinsic properties of the method based on composition/decomposition of elements have an impact in computer animation. We also state that the use of the same method for modeling both objects and human bodies improves the modeling both objects and human bodies improves the modeling of the contacts between them. Moreover, it allows a realistic envelope deformation of the human fingers comparable to existing methods. To show what we can expect from the method, we apply it to the grasping and pressing of a ball. Our solution to the grasping problem is based on displacement commands instead of force commands used in robotics and human behavior.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design,General Computer Science
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献