Studying the clustering paradox and scalability of search in highly distributed environments

Author:

Ke Weimao1,Mostafa Javed2

Affiliation:

1. Drexel University, Philadelphia, PA

2. University of North Carolina at Chapel Hill, Chapel Hill, NC

Abstract

With the ubiquitous production, distribution and consumption of information, today's digital environments such as the Web are increasingly large and decentralized. It is hardly possible to obtain central control over information collections and systems in these environments. Searching for information in these information spaces has brought about problems beyond traditional boundaries of information retrieval (IR) research. This article addresses one important aspect of scalability challenges facing information retrieval models and investigates a decentralized, organic view of information systems pertaining to search in large-scale networks. Drawing on observations from earlier studies, we conduct a series of experiments on decentralized searches in large-scale networked information spaces. Results show that how distributed systems interconnect is crucial to retrieval performance and scalability of searching. Particularly, in various experimental settings and retrieval tasks, we find a consistent phenomenon, namely, the Clustering Paradox , in which the level of network clustering (semantic overlay) imposes a scalability limit. Scalable searches are well supported by a specific, balanced level of network clustering emerging from local system interconnectivity. Departure from that level, either stronger or weaker clustering, leads to search performance degradation, which is dramatic in large-scale networks.

Funder

National Center for Research Resources

National Center for Advancing Translational Sciences

College of Information Science and Technology at Drexel University

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Collaboration, Self-Reflection, and Adaptation in Robot Communities: Using Multi-Agent Distributed Learning for Coordination Planning;2022 IEEE 4th International Conference on Cognitive Machine Intelligence (CogMI);2022-12

2. Distributed Search Efficiency and Robustness in Service oriented Multi-agent Networks;Proceedings of the 2017 International Conference on Management Engineering, Software Engineering and Service Sciences;2017-01-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3