Sparse hashing for fast multimedia search

Author:

Zhu Xiaofeng1,Huang Zi1,Cheng Hong2,Cui Jiangtao3,Shen Heng Tao1

Affiliation:

1. The University of Queensland, Australia

2. The Chinese University of Hong Kong

3. Xidian University, China

Abstract

Hash-based methods achieve fast similarity search by representing high-dimensional data with compact binary codes. However, both generating binary codes and encoding unseen data effectively and efficiently remain very challenging tasks. In this article, we focus on these tasks to implement approximate similarity search by proposing a novel hash based method named sparse hashing (SH for short). To generate interpretable (or semantically meaningful) binary codes, the proposed SH first converts original data into low-dimensional data through a novel nonnegative sparse coding method. SH then converts the low-dimensional data into Hamming space (i.e., binary encoding low-dimensional data) by a new binarization rule. After this, training data are represented by generated binary codes. To efficiently and effectively encode unseen data, SH learns hash functions by taking a-priori knowledge into account, such as implicit group effect of the features in training data, and the correlations between original space and the learned Hamming space. SH is able to perform fast approximate similarity search by efficient bit XOR operations in the memory of a modern PC with short binary code representations. Experimental results show that the proposed SH significantly outperforms state-of-the-art techniques.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Query Optimization Using Indexation Techniques in Datawarehouse: Survey and Use Cases;Lecture Notes in Networks and Systems;2024

2. Image Hash Layer Triggered CNN Framework for Wafer Map Failure Pattern Retrieval and Classification;ACM Transactions on Knowledge Discovery from Data;2023-12-19

3. Complex Scenario Image Retrieval via Deep Similarity-aware Hashing;ACM Transactions on Multimedia Computing, Communications, and Applications;2023-12-11

4. Indexation techniques in decision support systems: Study and Evaluation;2023 10th International Conference on Wireless Networks and Mobile Communications (WINCOM);2023-10-26

5. Ensemble learning framework for image retrieval via deep hash ranking;Knowledge-Based Systems;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3