General Belief Revision

Author:

Delgrande James P.1,Peppas Pavlos2,Woltran Stefan3

Affiliation:

1. Simon Fraser University, Burnaby, B.C., Canada

2. University of Patras and University of Technology Sydney, NSW, Australia

3. Technische Universität Wien, Vienna, Austria

Abstract

In artificial intelligence, a key question concerns how an agent may rationally revise its beliefs in light of new information. The standard (AGM) approach to belief revision assumes that the underlying logic contains classical propositional logic. This is a significant limitation, since many representation schemes in AI don’t subsume propositional logic. In this article, we consider the question of what the minimal requirements are on a logic, such that the AGM approach to revision may be formulated. We show that AGM-style revision can be obtained even when extremely little is assumed of the underlying language and its semantics; in fact, one requires little more than a language with sentences that are satisfied at models, or possible worlds. The classical AGM postulates are expressed in this framework and a representation result is established between the postulate set and certain preorders on possible worlds. To obtain the representation result, we add a new postulate to the AGM postulates, and we add a constraint to preorders on worlds. Crucially, both of these additions are redundant in the original AGM framework, and so we extend , rather than modify , the AGM approach. As well, iterated revision is addressed and the Darwiche/Pearl postulates are shown to be compatible with our approach. Various examples are given to illustrate the approach, including Horn clause revision, revision in extended logic programs, and belief revision in a very basic logic called literal revision .

Funder

Natural Sciences and Engineering Research Council of Canada

Austrian Science Fund

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3