Algorithm 956

Author:

Aruliah D. A.1,Veen Lennaert Van1,Dubitski Alex2

Affiliation:

1. University of Ontario Institute of Technology

2. Amadeus R&D, Toronto

Abstract

Pseudo-arclength continuation is a well-established method for generating a numerical curve approximating the solution of an underdetermined system of nonlinear equations. It is an inherently sequential predictor-corrector method in which new approximate solutions are extrapolated from previously converged results and then iteratively refined. Convergence of the iterative corrections is guaranteed only for sufficiently small prediction steps. In high-dimensional systems, corrector steps are extremely costly to compute and the prediction step length must be adapted carefully to avoid failed steps or unnecessarily slow progress. We describe a parallel method for adapting the step length employing several predictor-corrector sequences of different step lengths computed concurrently. In addition, the algorithm permits intermediate results of correction sequences that have not converged to seed new predictions. This strategy results in an aggressive optimization of the step length at the cost of redundancy in the concurrent computation. We present two examples of convoluted solution curves of high-dimensional systems showing that speed-up by a factor of two can be attained on a multicore CPU while a factor of three is attainable on a small cluster.

Funder

Natural Sciences and Engineering Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference21 articles.

1. E. Anderson Z. Bai C. Bischof S. Blackford J. Demmel J. Dongarra J. Du Croz A. Greenbaum S. Hammarling A. McKenney and D. Sorensen. 1999. LAPACK Users’ Guide (3rd ed.). SIAM Philadelphia PA. E. Anderson Z. Bai C. Bischof S. Blackford J. Demmel J. Dongarra J. Du Croz A. Greenbaum S. Hammarling A. McKenney and D. Sorensen. 1999. LAPACK Users’ Guide (3rd ed.). SIAM Philadelphia PA.

2. K. I. Dickson C. T. Kelley I. C. F. Ipsen and I. G. Kevrekidis. 2007. Condition estimates for pseudo-arclength continuation. SIAM ournal on Numerical Analysis 45 1 263--276. http://dx.doi.org/10.1137/060654384 10.1137/060654384 K. I. Dickson C. T. Kelley I. C. F. Ipsen and I. G. Kevrekidis. 2007. Condition estimates for pseudo-arclength continuation. SIAM ournal on Numerical Analysis 45 1 263--276. http://dx.doi.org/10.1137/060654384 10.1137/060654384

3. E. J. Doedel A. R. Champneys F. Dercole T. F. Fairgrieve Yu. A. Kuznetsov B. Oldeman R. Paffenroth B. Sandstede X. Wang and C. Zhang. 2009. AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations. Concordia University Montreal. Retrieved January 3 2016 from http://cmvl.cs.concordia.ca/auto/. E. J. Doedel A. R. Champneys F. Dercole T. F. Fairgrieve Yu. A. Kuznetsov B. Oldeman R. Paffenroth B. Sandstede X. Wang and C. Zhang. 2009. AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations. Concordia University Montreal. Retrieved January 3 2016 from http://cmvl.cs.concordia.ca/auto/.

4. J. F. Gibson. 2014. Private communications on computations using channelflow (www.channelflow.org). J. F. Gibson. 2014. Private communications on computations using channelflow (www.channelflow.org).

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3