Aesthetics-Guided Summarization from Multiple User Generated Videos

Author:

Zhang Ying1,Zhang Luming1,Zimmermann Roger1

Affiliation:

1. National University of Singapore, Singapore

Abstract

In recent years, with the rapid development of camera technology and portable devices, we have witnessed a flourish of user generated videos, which are gradually reshaping the traditional professional video oriented media market. The volume of user generated videos in repositories is increasing at a rapid rate. In today's video retrieval systems, a simple query will return many videos which seriously increase the viewing burden. To manage these video retrievals and provide viewers with an efficient way to browse, we introduce a system to automatically generate a summarization from multiple user generated videos and present their salience to viewers in an enjoyable manner. Among multiple consumer videos, we find their qualities to be highly diverse due to various factors such as a photographer's experience or environmental conditions at the time of capture. Such quality inspires us to include a video quality evaluation component into the video summarization since videos with poor qualities can seriously degrade the viewing experience. We first propose a probabilistic model to evaluate the aesthetic quality of each user generated video. This model compares the rich aesthetics information from several well-known photo databases with generic unlabeled consumer videos, under a human perception component indicating the correlation between a video and its constituting frames. Subjective studies were carried out with the results indicating that our method is reliable. Then a novel graph-based formulation is proposed for the multi-video summarization task. Desirable summarization criteria is incorporated as the graph attributes and the problem is solved through a dynamic programming framework. Comparisons with several state-of-the-art methods demonstrate that our algorithm performs better than other methods in generating a skimming video in preserving the essential scenes from the original multiple input videos, with smooth transitions among consecutive segments and appealing aesthetics overall.

Funder

Singapore National Research Foundation under its International Research Centre @ Singapore Funding Initiative

IDM Programme Office through the Centre of Social Media Innovations for Communities

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3