Supervised Learning Techniques in Mobile Device Apps for Androids

Author:

Basavaraju Priyanka1,Varde Aparna S.1

Affiliation:

1. Montclair State University, NJ

Abstract

Mobile devices have become an integral part of our daily lives. Most people carry smartphones today almost everywhere; and have other mobile devices such as tablets, often more convenient than full-fledged laptops for work transit, short trips etc. This had led to development of apps for mobile devices, easy to download and access anywhere anytime. An important field improving human experiences on mobile devices is machine learning. This constitutes technqiues involving acquisition of knowledge, skills and understanding by machines from examples, guidance, experience or reflection to learn analogous to humans. Among learning paradigms herein, supervised learning comprises situations where labeled training samples are provided to administer the process, making it more regulated, similar to human instructors providing such examples with notions of correctness to guide human learners. Supervised learning techniques are useful in designing mobile apps as they entail guided examples capturing specific human needs and their reasoning in activities, e.g., classification. This paper gives a comprehensive review of a few useful supervised learning approaches along with their implementation in mobile apps, focusing on Androids as they constitute over 50% of the global smartphone market. It includes description of the approaches and portrays interesting Android apps deploying them, addressing classification and regression problems. We discuss the contributions and critiques of the apps and also present open issues with the potential for further research in related areas. This paper is expected to be useful to students, researchers and developers in mobile computing, human computer interaction, data mining and machine learning.

Publisher

Association for Computing Machinery (ACM)

Reference21 articles.

1. Alpaydin Ethem Introdtction to Machine Learning MIT Press 2014. Alpaydin Ethem Introdtction to Machine Learning MIT Press 2014.

2. Android Malware Genome Project URL reference: http://www.malgenomeproject.Org/ Android Malware Genome Project URL reference: http://www.malgenomeproject.Org/

3. Predicting The Next App That You Are Going To Use

4. Bishop Christopher. M. Netral Networks for Pattern Recognition Oxford University Press 1995. Bishop Christopher. M. Netral Networks for Pattern Recognition Oxford University Press 1995.

5. ScanMe mobile

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3