BAMB

Author:

Ling Zhaolong1ORCID,Yu Kui1,Wang Hao1,Liu Lin2ORCID,Ding Wei3,Wu Xindong4

Affiliation:

1. Hefei University of Technology, Hefei, Anhui, China

2. University of South Australia, Adelaide, SA, Australia

3. University of Massachusetts Boston, Boston, MA, USA

4. Mininglamp Technology, Beijing, China

Abstract

The discovery of Markov blanket (MB) for feature selection has attracted much attention in recent years, since the MB of the class attribute is the optimal feature subset for feature selection. However, almost all existing MB discovery algorithms focus on either improving computational efficiency or boosting learning accuracy, instead of both. In this article, we propose a novel MB discovery algorithm for balancing efficiency and accuracy, called <underline>BA</underline>lanced <underline>M</underline>arkov <underline>B</underline>lanket (BAMB) discovery. To achieve this goal, given a class attribute of interest, BAMB finds candidate PC (parents and children) and spouses and removes false positives from the candidate MB set in one go. Specifically, once a feature is successfully added to the current PC set, BAMB finds the spouses with regard to this feature, then uses the updated PC and the spouse set to remove false positives from the current MB set. This makes the PC and spouses of the target as small as possible and thus achieves a trade-off between computational efficiency and learning accuracy. In the experiments, we first compare BAMB with 8 state-of-the-art MB discovery algorithms on 7 benchmark Bayesian networks, then we use 10 real-world datasets and compare BAMB with 12 feature selection algorithms, including 8 state-of-the-art MB discovery algorithms and 4 other well-established feature selection methods. On prediction accuracy, BAMB outperforms 12 feature selection algorithms compared. On computational efficiency, BAMB is close to the IAMB algorithm while it is much faster than the remaining seven MB discovery algorithms.

Funder

National Science Foundation of China

Anhui Province Key Research and Development Plan

National Key Research and Development Program of China

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fair Feature Selection: A Causal Perspective;ACM Transactions on Knowledge Discovery from Data;2024-06-19

2. Efficient Discovery of Spouses for Causal Feature Selection;2024 6th International Conference on Communications, Information System and Computer Engineering (CISCE);2024-05-10

3. OSFS‐Vague: Online streaming feature selection algorithm based on vague set;CAAI Transactions on Intelligence Technology;2024-04-08

4. Fast Shrinking parents-children learning for Markov blanket-based feature selection;International Journal of Machine Learning and Cybernetics;2024-03-07

5. Causal Feature Selection With Imbalanced Data;IEEE Transactions on Emerging Topics in Computational Intelligence;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3