Affiliation:
1. Singapore University of Technology and Design
2. Singapore University of Technology and Design and AppGate Inc.
Abstract
Fingerprinting of various physical and logical devices has been proposed for uniquely identifying users or devices of mainstream IT systems such as PCs, laptops, and smart phones. However, the application of such techniques in Industrial Control Systems (ICS) is less explored for reasons such as a lack of direct access to such systems and the cost of faithfully reproducing realistic threat scenarios. This work addresses the feasibility of using fingerprinting techniques in the context of realistic ICS related to water treatment and distribution systems. A model-free sensor fingerprinting scheme (
NoiSense
) and a model-based sensor fingerprinting scheme (
NoisePrint
) are proposed. Using extensive experimentation with sensors, it is shown that noise patterns due to microscopic imperfections in hardware manufacturing can uniquely identify sensors with accuracy as high as 97%. The proposed technique can be used to detect physical attacks, such as the replacement of legitimate sensors by faulty or manipulated sensors. For
NoisePrint
, a combined fingerprint for sensor and process noise is created. The difference (called residual), between expected and observed values, i.e., noise, is used to derive a model of the system. It was found that in steady state the residual vector is a function of process and sensor noise. Data from experiments reveals that a multitude of sensors can be uniquely identified with a minimum accuracy of 90% based on
NoisePrint
. Also proposed is a novel challenge-response protocol that exposes more powerful cyber-attacks, including replay attacks.
Publisher
Association for Computing Machinery (ACM)
Subject
Safety, Risk, Reliability and Quality,General Computer Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献