Novelty and Diversity in Top-N Recommendation -- Analysis and Evaluation

Author:

Hurley Neil1,Zhang Mi2

Affiliation:

1. University College Dublin

2. Fudan University

Abstract

For recommender systems that base their product rankings primarily on a measure of similarity between items and the user query, it can often happen that products on the recommendation list are highly similar to each other and lack diversity. In this article we argue that the motivation of diversity research is to increase the probability of retrieving unusual or novel items which are relevant to the user and introduce a methodology to evaluate their performance in terms of novel item retrieval. Moreover, noting that the retrieval of a set of items matching a user query is a common problem across many applications of information retrieval, we formulate the trade-off between diversity and matching quality as a binary optimization problem, with an input control parameter allowing explicit tuning of this trade-off. We study solution strategies to the optimization problem and demonstrate the importance of the control parameter in obtaining desired system performance. The methods are evaluated for collaborative recommendation using two datasets and case-based recommendation using a synthetic dataset constructed from the public-domain Travel dataset.

Funder

Ministry of Science and Technology of the People's Republic of China

Shanghai Leading Academic Discipline Project

Science Foundation Ireland

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference27 articles.

Cited by 219 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3