Fraud Detection under Siege: Practical Poisoning Attacks and Defense Strategies

Author:

Paladini Tommaso1ORCID,Monti Francesco1ORCID,Polino Mario1ORCID,Carminati Michele1ORCID,Zanero Stefano1ORCID

Affiliation:

1. Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Italy

Abstract

Machine learning (ML) models are vulnerable to adversarial machine learning (AML) attacks. Unlike other contexts, the fraud detection domain is characterized by inherent challenges that make conventional approaches hardly applicable. In this article, we extend the application of AML techniques to the fraud detection task by studying poisoning attacks and their possible countermeasures. First, we present a novel approach for performing poisoning attacks that overcomes the fraud detection domain-specific constraints. It generates fraudulent candidate transactions and tests them against a machine learning-based Oracle , which simulates the target fraud detection system aiming at evading it. Misclassified fraudulent candidate transactions are then integrated into the target detection system’s training set, poisoning its model and shifting its decision boundary. Second, we propose a novel approach that extends the adversarial training technique to mitigate AML attacks: During the training phase of the detection system, we generate artificial frauds by modifying random original legitimate transactions; then, we include them in the training set with the correct label. By doing so, we instruct our model to recognize evasive transactions before an attack occurs. Using two real bank datasets, we evaluate the security of several state-of-the-art fraud detection systems by deploying our poisoning attack with different degrees of attacker’s knowledge and attacking strategies. The experimental results show that our attack works even when the attacker has minimal knowledge of the target system. Then, we demonstrate that the proposed countermeasure can mitigate adversarial attacks by reducing the stolen amount of money up to 100%.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3