Explainable Integration of Social Media Background in a Dynamic Neural Recommender

Author:

Zhang Yihong1ORCID,Hara Takahiro1ORCID

Affiliation:

1. Osaka University, Osaka, Japan

Abstract

Recommender systems nowadays are commonly deployed in e-commerce platforms to help customers making purchase decisions. Dynamic recommender considers not only static user-item interaction data, but the temporal information at the time of recommendation. Previous researches have suggested to incorporate social media as the temporal information in dynamic neural recommenders after transforming them into embeddings. While such an approach can potentially improve recommendation performance, the effectiveness is difficult to explain. In this article, we propose an explainable method to integrate social media in a dynamic neural recommender. Our method applies association rule mining, which can generate human-understandable behavior patterns from social media and e-commerce platforms. With real-world social media and e-commerce data, we show that the integration can improve accuracy by up to 14% while using the same data. Moreover, we can explain the positive cases by examining relevant association rules.

Funder

JST CREST

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrating Social Environment in Machine Learning Model for Debiased Recommendation;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3