Affiliation:
1. ETH Zurich, Zurich, Switzerland
2. TU Delft, Delft, Netherlands
3. SUTD, Singapore
Abstract
The manageability and resilience of critical infrastructures, such as power and water networks, is challenged by their increasing interdependence and interconnectivity. Power networks often experience cascading failures, i.e. blackouts, that have unprecedented economic and social impact. Al- though knowledge exists about how to control such complex non-linear phenomena within a single power network, little is known about how such failures can spread and coevolve in the water network when failing power components energize the water distribution infrastructure, i.e. pumps and valves. This paper studies such a scenario and specifically the impact of power cascading failures on shortages of water supply. A realistic exemplary of an interconnected power-to-water network is experimentally evaluated using a modular simulation approach. Power and waterflow dynamics are simulated separately by taking into account different maximum powerlines capacities and water demand requirements. Results showcase the strong dependency of urban water sup- ply systems on the reliability of power networks, with severe shortages of water supply being caused by failures originating indistant power lines, especially for heavily loaded power networks.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture,Software
Reference23 articles.
1. Modeling and control of complex interactive networks [Guest Editorial]
2. Suppressing cascades of load in interdependent networks
3. Efficient response to cascading disaster spreading
4. H.Douglas R.Taormina and S.Galelli. Pressure-driven modeling of cyber-physical attacks on water distribution systems. Journal of Water Resources Planning and Management doi: 10.1061/(ASCE)WR.1943--5452.0001038 2019. H.Douglas R.Taormina and S.Galelli. Pressure-driven modeling of cyber-physical attacks on water distribution systems. Journal of Water Resources Planning and Management doi: 10.1061/(ASCE)WR.1943--5452.0001038 2019.
5. A new applications manual for the Storm Water Management Model (SWMM)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献