Heterogeneous-Length Text Topic Modeling for Reader-Aware Multi-Document Summarization

Author:

Qiang Jipeng1ORCID,Chen Ping2,Ding Wei2,Wang Tong2,Xie Fei3,Wu Xindong4

Affiliation:

1. Yangzhou University, China

2. University of Massachusetts Boston

3. Hefei Normal University, China

4. Mininglamp Academy of Sciences, Minininglamp and Key Laboratory of Knowledge Engineering with Big Data (Hefei University of Technology), Ministry of Education, Hefei, China

Abstract

More and more user comments like Tweets are available, which often contain user concerns. In order to meet the demands of users, a good summary generating from multiple documents should consider reader interests as reflected in reader comments. In this article, we focus on how to generate a summary from multi-document documents by considering reader comments, named as reader-aware multi-document summarization (RA-MDS). We present an innovative topic-based method for RA-MDA, which exploits latent topics to obtain the most salient and lessen redundancy summary from multiple documents. Since finding latent topics for RA-MDS is a crucial step, we also present a Heterogeneous-length Text Topic Modeling (HTTM) to extract topics from the corpus that includes both news reports and user comments, denoted as heterogeneous-length texts. In this case, the latent topics extract by HTTM cover not only important aspects of the event, but also aspects that attract reader interests. Comparisons on summary benchmark datasets also confirm that the proposed RA-MDS method is effective in improving the quality of extracted summaries. In addition, experimental results demonstrate that the proposed topic modeling method outperforms existing topic modeling algorithms.

Funder

Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) of the Ministry of Education, China

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province of China

Natural Science Foundation of the Higher Education Institutions of Jiangsu Province of China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3