Imperative or Functional Control Flow Handling

Author:

Gévay Gábor E.1,Rabl Tilmann2,Breß Sebastian3,Madai-Tahy Loránd4,Quiané-Ruiz Jorge-Arnulfo5,Markl Volker5

Affiliation:

1. TU Berlin

2. HPI, Uni Potsdam

3. Snowflake Inc.

4. mindsquare AG

5. TU Berlin, DFKI GmbH

Abstract

Modern data analysis tasks often involve control flow statements, such as the iterations in PageRank and K-means. To achieve scalability, developers usually implement these tasks in distributed dataflow systems, such as Spark and Flink. Designers of such systems have to choose between providing imperative or functional control flow constructs to users. Imperative constructs are easier to use, but functional constructs are easier to compile to an efficient dataflow job. We propose Mitos, a system where control flow is both easy to use and efficient. Mitos relies on an intermediate representation based on the static single assignment form. This allows us to abstract away from specific control flow constructs and treat any imperative control flow uniformly both when building the dataflow job and when coordinating the distributed execution.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Reference23 articles.

1. Representations and Optimizations for Embedded Parallel Dataflow Languages

2. Implicit Parallelism through Deep Language Embedding

3. Arvind and D. E. Culler . Dataflow architectures. Annual review of computer science, 1(1) , 1986 . Arvind and D. E. Culler. Dataflow architectures. Annual review of computer science, 1(1), 1986.

4. Julia: A Fresh Approach to Numerical Computing

5. M. Boehm , I. Antonov , S. Baunsgaard , M. Dokter , R. Ginth¨or , K. Innerebner , F. Klezin , S. Lindstaedt , A. Phani , B. Rath , B. Reinwald , S. Siddiqi , and S. B. Wrede . SystemDS: A declarative machine learning system for the end-to-end data science lifecycle . In CIDR , 2020 . M. Boehm, I. Antonov, S. Baunsgaard, M. Dokter, R. Ginth¨or, K. Innerebner, F. Klezin, S. Lindstaedt, A. Phani, B. Rath, B. Reinwald, S. Siddiqi, and S. B. Wrede. SystemDS: A declarative machine learning system for the end-to-end data science lifecycle. In CIDR, 2020.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Nested Recursive Queries;Proceedings of the ACM on Management of Data;2024-03-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3