Model Counting Meets Distinct Elements in a Data Stream

Author:

Pavan A.1,Vinodchandran N. V.2,Bhattacharyya Arnab3,Meel Kuldeep S.3

Affiliation:

1. Iowa State University

2. University of Nebraska, Lincoln

3. National University of Singapore

Abstract

Constraint satisfaction problems (CSPs) and data stream models are two powerful abstractions to capture a wide variety of problems arising in different domains of computer science. Developments in the two communities have mostly occurred independently and with little interaction between them. In this work, we seek to investigate whether bridging the seeming communication gap between the two communities may pave the way to richer fundamental insights. To this end, we focus on two foundational problems: model counting for CSPs and computation of zeroth frequency moments (F0) for data streams.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Reference33 articles.

1. The Space Complexity of Approximating the Frequency Moments

2. Counting Distinct Elements in a Data Stream

3. Z. Bar-Yossef , R. Kumar , and D. Sivakumar . Reductions in streaming algorithms, with an application to counting triangles in graphs . In Proc. of SODA , pages 623 -- 632 . ACM/SIAM , 2002 . Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in streaming algorithms, with an application to counting triangles in graphs. In Proc. of SODA, pages 623--632. ACM/SIAM, 2002.

4. J. L. Carter and M. N. Wegman . Universal classes of hash functions . In Proceedings of the ninth annual ACM symposium on Theory of computing , pages 106 -- 112 . ACM, 1977 . J. L. Carter and M. N. Wegman. Universal classes of hash functions. In Proceedings of the ninth annual ACM symposium on Theory of computing, pages 106--112. ACM, 1977.

5. S. Chakraborty , K. S. Meel , and M. Y. Vardi . Algorithmic improvements in approximate counting for probabilistic inference: From linear to logarithmic SAT calls . In Proc. of IJCAI , 2016 . S. Chakraborty, K. S. Meel, and M. Y. Vardi. Algorithmic improvements in approximate counting for probabilistic inference: From linear to logarithmic SAT calls. In Proc. of IJCAI, 2016.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3