Power gating strategies on GPUs

Author:

Wang Po-Han1,Yang Chia-Lin1,Chen Yen-Ming1,Cheng Yu-Jung1

Affiliation:

1. National Taiwan University, Taipei, Taiwan (R.O.C.)

Abstract

As technology continues to shrink, reducing leakage is critical to achieving energy efficiency. Previous studies on low-power GPUs (Graphics Processing Units) focused on techniques for dynamic power reduction, such as DVFS (Dynamic Voltage and Frequency Scaling) and clock gating. In this paper, we explore the potential of adopting architecture-level power gating techniques for leakage reduction on GPUs. We propose three strategies for applying power gating on different modules in GPUs. The Predictive Shader Shutdown technique exploits workload variation across frames to eliminate leakage in shader clusters. Deferred Geometry Pipeline seeks to minimize leakage in fixed-function geometry units by utilizing an imbalance between geometry and fragment computation across batches. Finally, the simple time-out power gating method is applied to nonshader execution units to exploit a finer granularity of the idle time. Our results indicate that Predictive Shader Shutdown eliminates up to 60% of the leakage in shader clusters, Deferred Geometry Pipeline removes up to 57% of the leakage in the fixed-function geometry units, and the simple time-out power gating mechanism eliminates 83.3% of the leakage in nonshader execution units on average. All three schemes incur negligible performance degradation, less than 1%.

Funder

Excellent Research Projects of National Taiwan University

Macronix International Co., LTD.

Etron Technology Inc.

National Science Council Taiwan

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Reference44 articles.

1. Graphics for the masses

2. Beyond3D. 2008. Ati rv635 chip details. http://www.beyond3d.com/resources/chip/127. Beyond3D. 2008. Ati rv635 chip details. http://www.beyond3d.com/resources/chip/127.

3. Design challenges of technology scaling

4. Butler H. 2010. Nvidia geforce gtx 480 1 536mb review. http://www.bittech.net/hardware/2010/03/27/nvidia-geforce-gtx-480-1-5gb-review/10. Butler H. 2010. Nvidia geforce gtx 480 1 536mb review. http://www.bittech.net/hardware/2010/03/27/nvidia-geforce-gtx-480-1-5gb-review/10.

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey on Run-time Power Monitors at the Edge;ACM Computing Surveys;2023-07-17

2. PTTS: Power-aware tensor cores using two-sided sparsity;Journal of Parallel and Distributed Computing;2023-03

3. Technology Prospects for Data-Intensive Computing;Proceedings of the IEEE;2023-01

4. Towards Energy-Efficient Real-Time Scheduling of Heterogeneous Multi-GPU Systems;2022 IEEE Real-Time Systems Symposium (RTSS);2022-12

5. E-BATCH: Energy-Efficient and High-Throughput RNN Batching;ACM Transactions on Architecture and Code Optimization;2022-01-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3