Topic-Dependent Language Model with Voting on Noun History

Author:

Naptali Welly1,Tsuchiya Masatoshi1,Nakagawa Seiichi1

Affiliation:

1. Toyohashi University of Technology

Abstract

Language models (LMs) are an important field of study in automatic speech recognition (ASR) systems. LM helps acoustic models find the corresponding word sequence of a given speech signal. Without it, ASR systems would not understand the language and it would be hard to find the correct word sequence. During the past few years, researchers have tried to incorporate long-range dependencies into statistical word-based n -gram LMs. One of these long-range dependencies is topic. Unlike words, topic is unobservable. Thus, it is required to find the meanings behind the words to get into the topic. This research is based on the belief that nouns contain topic information. We propose a new approach for a topic-dependent LM, where the topic is decided in an unsupervised manner. Latent Semantic Analysis (LSA) is employed to reveal hidden (latent) relations among nouns in the context words. To decide the topic of an event, a fixed size word history sequence (window) is observed, and voting is then carried out based on noun class occurrences weighted by a confidence measure. Experiments were conducted on an English corpus and a Japanese corpus: The Wall Street Journal corpus and Mainichi Shimbun (Japanese newspaper) corpus. The results show that our proposed method gives better perplexity than the comparative baselines, including a word-based/class-based n -gram LM, their interpolated LM, a cache-based LM, a topic-dependent LM based on n -gram, and a topic-dependent LM based on Latent Dirichlet Allocation (LDA). The n -best list rescoring was conducted to validate its application in ASR systems.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Venue Topic Model–enhanced Joint Graph Modelling for Citation Recommendation in Scholarly Big Data;ACM Transactions on Asian and Low-Resource Language Information Processing;2021-01-31

2. Research on Topic Link Detection Method Based on Semantic Domain;Pervasive Computing and the Networked World;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3