Protecting C programs from attacks via invalid pointer dereferences

Author:

Yong Suan Hsi1,Horwitz Susan1

Affiliation:

1. University of Wisconsin-Madison, Madison WI

Abstract

Writes via unchecked pointer dereferences rank high among vulnerabilities most often exploited by malicious code. The most common attacks use an unchecked string copy to cause a buffer overrun, thereby overwriting the return address in the function's activation record. Then, when the function "returns", control is actually transferred to the attacker's code. Other attacks may overwrite function pointers, setjmp buffers, system-call arguments, or simply corrupt data to cause a denial of service.A number of techniques have been proposed to address such attacks. Some are limited to protecting the return address only; others are more general, but have undesirable properties such as having a high runtime overhead, requiring manual changes to the source code, or forcing programmers to give up control of data representations and memory management.This paper describes the design and implementation of a security tool for C programs that addresses all these issues: it has a low runtime overhead, does not require source code modification by the programmer, does not report false positives, and provides protection against a wide range of attacks via bad pointer dereferences, including but not limited to buffer overruns and attempts to access previously freed memory. The tool uses static analysis to identify potentially dangerous pointer dereferences, and memory locations that are legitimate targets of these pointers. Dynamic checks are then inserted; if at runtime the target of an unsafe dereference is not in the legitimate set, a potential security violation is reported, and the program is halted.

Publisher

Association for Computing Machinery (ACM)

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RTT-UAF: Reuse Time Tracking for Use-After-Free Detection;Proceedings of the 38th ACM International Conference on Supercomputing;2024-05-30

2. A Smart Status Based Monitoring Algorithm for the Dynamic Analysis of Memory Safety;ACM Transactions on Software Engineering and Methodology;2023-12-11

3. A Source-Level Instrumentation Framework for the Dynamic Analysis of Memory Safety;IEEE Transactions on Software Engineering;2023-04-01

4. Exploitation Techniques for Data-oriented Attacks with Existing and Potential Defense Approaches;ACM Transactions on Privacy and Security;2021-11-30

5. Runtime detection of memory errors with smart status;Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis;2021-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3