Automated Computational Cognitive-Modeling

Author:

Schaik Paul Van1,Muzahir Raza Habib2,Lockyer Mike1

Affiliation:

1. Teesside University, Middlesbrough

2. Teesside University

Abstract

The information architecture of websites is the most important remaining source of usability problems. Therefore, this research explores automated cognitive computational analysis of the information architecture of large websites as a basis for improvement. To support goal-specific analysis, an enhanced model of web navigation was implemented with a novel database-oriented approach. Web navigation was simulated on the information architecture of two large sites. With the improved labeling system of the information architecture, simulation results showed a significant reduction in navigation problems. The results of two experiments demonstrate that sites with improved information architecture result in better outcomes of user information retrieval. Our database-oriented approach is extensible, allowing non-goal-specific analysis, modeling of nontext media content, and analysis of the organization- and navigation systems of information architectures.

Publisher

Association for Computing Machinery (ACM)

Subject

Human-Computer Interaction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. How to debug inclusivity bugs?;Proceedings of the 2022 ACM/IEEE 44th International Conference on Software Engineering: Software Engineering in Society;2022-05-21

2. How to Debug Inclusivity Bugs? A Debugging Process with Information Architecture;2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS);2022-05

3. Predicting User Performance and Learning in Human--Computer Interaction with the Herbal Compiler;ACM Transactions on Computer-Human Interaction;2015-09-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3