Cross-Browser Differences Detection Based on an Empirical Metric for Web Page Visual Similarity

Author:

Xu Zhen1,Miller James1

Affiliation:

1. University of Alberta

Abstract

This article aims to develop a method to detect visual differences introduced into web pages when they are rendered in different browsers. To achieve this goal, we propose an empirical visual similarity metric by mimicking human mechanisms of perception. The Gestalt laws of grouping are translated into a computer compatible rule set. A block tree is then parsed by the rules for similarity calculation. During the translation of the Gestalt laws, experiments are performed to obtain metrics for proximity, color similarity, and image similarity. After a validation experiment, the empirical metric is employed to detect cross-browser differences. Experiments and case studies on the world’s most popular web pages provide positive results for this methodology.

Funder

China Scholarship Council

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference31 articles.

1. A Visual Technique for Web Pages Comparison

2. Jyotish Chandra Banerjee. 1994. Encyclopaedic Dictionary of Psychological Terms. MD Publications Pvt. Ltd. New Delhi. Jyotish Chandra Banerjee. 1994. Encyclopaedic Dictionary of Psychological Terms. MD Publications Pvt. Ltd. New Delhi.

3. Detecting visually similar Web pages

4. CrossCheck: Combining Crawling and Differencing to Better Detect Cross-browser Incompatibilities in Web Applications

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated visual testing for mobile apps in an industrial seting;Proceedings of the 44th International Conference on Software Engineering: Software Engineering in Practice;2022-05-21

2. Automated Visual Testing for Mobile Apps in an Industrial Setting;2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP);2022-05

3. Integrated-Block: A New Combination Model to Improve Web Page Segmentation;Journal of Web Engineering;2022-04-16

4. Webpage Matching Based on Visual Similarity;Computers, Materials & Continua;2022

5. X-Check: Improving Effectiveness and Efficiency of Cross-Browser Issues Detection for JavaScript-Based Web Applications;IEEE Transactions on Services Computing;2021-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3