SHARE

Author:

Jajodia Sushil1ORCID,Park Noseong2,Serra Edoardo3,Subrahmanian V. S.4

Affiliation:

1. George Mason University, Fairfax, VA, USA

2. University of North Carolina, Charlotte, NC, USA

3. Boise State University, Boise, ID, USA

4. Dartmouth College, Hanover, NH, USA

Abstract

A “noisy-rich” (NR) cyber-attacker (Lippmann et al. 2012) is one who tries all available vulnerabilities until he or she successfully compromises the targeted network. We develop an adversarial foundation, based on Stackelberg games, for how NR-attackers will explore an enterprise network and how they will attack it, based on the concept of a system vulnerability dependency graph. We develop a mechanism by which the network can be modified by the defender to induce deception by placing honey nodes and apparent vulnerabilities into the network to minimize the expected impact of the NR-attacker’s attacks (according to multiple measures of impact). We also consider the case where the adversary learns from blocked attacks using reinforcement learning. We run detailed experiments with real network data (but with simulated attack data) and show that Stackelberg Honey-based Adversarial Reasoning Engine performs very well, even when the adversary deviates from the initial assumptions made about his or her behavior. We also develop a method for the attacker to use reinforcement learning when his or her activities are stopped by the defender. We propose two stopping policies for the defender: Stop Upon Detection allows the attacker to learn about the defender’s strategy and (according to our experiments) leads to significant damage in the long run, whereas Stop After Delay allows the defender to introduce greater uncertainty into the attacker, leading to better defendability in the long run.

Funder

Maryland Procurement Office

ARO

ONR

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Probabilistic models for evaluating network edge's resistance against scan and foothold attack;IET Communications;2024-04-23

2. Geographic-Region Monitoring by Drones in Adversarial Environments;ACM Transactions on Spatial Algorithms and Systems;2023-09-13

3. Triple methods-based empirical assessment of the effectiveness of adaptive cyber defenses in the cloud;The Journal of Supercomputing;2022-12-23

4. Optimal strategy selection for attack graph games using deep reinforcement learning;2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys);2022-12

5. Honeypot Active Defense Technology for UAV Cyber Range;2022 China Automation Congress (CAC);2022-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3