Firefly

Author:

Pan Yan1,Kumar Prabhat1,Kim John2,Memik Gokhan1,Zhang Yu1,Choudhary Alok1

Affiliation:

1. Northwestern University, Evanston, IL, USA

2. KAIST, Daejeon, South Korea

Abstract

Future many-core processors will require high-performance yet energy-efficient on-chip networks to provide a communication substrate for the increasing number of cores. Recent advances in silicon nanophotonics create new opportunities for on-chip networks. To efficiently exploit the benefits of nanophotonics, we propose Firefly - a hybrid, hierarchical network architecture. Firefly consists of clusters of nodes that are connected using conventional, electrical signaling while the inter-cluster communication is done using nanophotonics - exploiting the benefits of electrical signaling for short, local communication while nanophotonics is used only for global communication to realize an efficient on-chip network. Crossbar architecture is used for inter-cluster communication. However, to avoid global arbitration, the crossbar is partitioned into multiple, logical crossbars and their arbitration is localized. Our evaluations show that Firefly improves the performance by up to 57% compared to an all-electrical concentrated mesh (CMESH) topology on adversarial traffic patterns and up to 54% compared to an all-optical crossbar (OP XBAR) on traffic patterns with locality. If the energy-delay-product is compared, Firefly improves the efficiency of the on-chip network by up to 51% and 38% compared to CMESH and OP XBAR, respectively.

Publisher

Association for Computing Machinery (ACM)

Cited by 163 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Routing and Wavelength Assignment for Multiple Multicasts in Optical Network-on-Chip (ONoC);IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2023-12

2. Network-on-Chip and Photonic Network-on-Chip Basic Concepts: A Survey;Journal of Electronic Testing;2023-02

3. Comparing the performance of multi-layer perceptron training on electrical and optical network-on-chips;The Journal of Supercomputing;2022-11-23

4. A Practical Shared Optical Cache With Hybrid MWSR/R-SWMR NoC for Multicore Processors;ACM Journal on Emerging Technologies in Computing Systems;2022-10-13

5. Prediction Modeling for Application-Specific Communication Architecture Design of Optical NoC;ACM Transactions on Embedded Computing Systems;2022-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3