Thread criticality predictors for dynamic performance, power, and resource management in chip multiprocessors

Author:

Bhattacharjee Abhishek1,Martonosi Margaret1

Affiliation:

1. Princeton University, Princeton, NJ, USA

Abstract

With the shift towards chip multiprocessors (CMPs), exploiting and managing parallelism has become a central problem in computing systems. Many issues of parallelism management boil down to discerning which running threads or processes are critical, or slowest, versus which are non-critical. If one can accurately predict critical threads in a parallel program, then one can respond in a variety of ways. Possibilities include running the critical thread at a faster clock rate, performing load balancing techniques to offload work onto currently non-critical threads, or giving the critical thread more on-chip resources to execute faster. This paper proposes and evaluates simple but effective thread criticality predictors for parallel applications. We show that accurate predictors can be built using counters that are typically already available on-chip. Our predictor, based on memory hierarchy statistics, identifies thread criticality with an average accuracy of 93% across a range of architectures. We also demonstrate two applications of our predictor. First, we show how Intel's Threading Building Blocks (TBB) parallel runtime system can benefit from task stealing techniques that use our criticality predictor to reduce load imbalance. Using criticality prediction to guide TBB's task-stealing decisions improves performance by 13-32% for TBB-based PARSEC benchmarks running on a 32-core CMP. As a second application, criticality prediction guides dynamic energy optimizations in barrier-based applications. By running the predicted critical thread at the full clock rate and frequency-scaling non-critical threads, this approach achieves average energy savings of 15% while negligibly degrading performance for SPLASH-2 and PARSEC benchmarks.

Publisher

Association for Computing Machinery (ACM)

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Seamless Thermal Optimization of Parallel Workloads;IEEE Design & Test;2023-10

2. TokenSmart: Distributed, Scalable Power Management in the Many-core Era;ACM Transactions on Architecture and Code Optimization;2022-11-17

3. Criticality-aware priority to accelerate GPU memory access;The Journal of Supercomputing;2022-07-06

4. Efficient Multi-GPU Shared Memory via Automatic Optimization of Fine-Grained Transfers;2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA);2021-06

5. Multi-Core Power Management through Deep Reinforcement Learning;2021 IEEE International Symposium on Circuits and Systems (ISCAS);2021-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3