Approximate Spintronic Memories

Author:

Sayed Nour1ORCID,Bishnoi Rajendra1,Tahoori Mehdi B.1

Affiliation:

1. Chair of Dependable Nano Computing, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Abstract

Various applications, such as multimedia, machine learning, and signal processing, have a significant intrinsic error resilience. This makes them preferable for approximate computing as they have the ability to tolerate computations and data errors along with producing acceptable outputs. From the technology perspective, emerging technologies with inherent non-determinism and high failure rates are candidates for the realization of approximate computing. Spin Transfer Torque Magnetic Random Access Memories (STT-MRAM) is an emerging non-volatile memory technology and a potential candidate to replace SRAM due to its high density, scalability, and zero-leakage. The write operation in this technology is inherently stochastic and increases the rate of write errors. Moreover, this technology is associated with other failure mechanisms such as read-disturb and failures due to data retention. These errors are highly dependent on the STT-MRAM parameters (i.e., thermal stability, read/write current, and read/write latency), which varies with the operating temperature and the process variation effects. Fast and energy-efficient STT-MRAM designed for on-chip memories can be easily achieved by relaxing the device parameters at the cost of increased error rate, which can be addressed by approximating memory accesses. In this work, a detailed study of reliability and gains (i.e., performance and energy) tradeoff at the device and system-level of the STT-MRAM-based data cache system is presented in the scope of approximate memories.

Funder

22nd IEEE European Test Symposium

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3