Affiliation:
1. Renmin University of China, Beijing, China
2. BEIJING AI-FINANCE TECHNOLOGIES CO. LTD, Beijing, China
Abstract
Language models have shown promising performance on the task of translating natural language questions into SQL queries (Text-to-SQL). However, most of the state-of-the-art (SOTA) approaches rely on powerful yet closed-source large language models (LLMs), such as ChatGPT and GPT-4, which may have the limitations of unclear model architectures, data privacy risks, and expensive inference overheads. To address the limitations, we introduce CodeS, a series of pre-trained language models with parameters ranging from 1B to 15B, specifically designed for the text-to-SQL task. CodeS is a fully open-source language model, which achieves superior accuracy with much smaller parameter sizes. This paper studies the research challenges in building CodeS. To enhance the SQL generation abilities of CodeS, we adopt an incremental pre-training approach using a specifically curated SQL-centric corpus. Based on this, we address the challenges of schema linking and rapid domain adaptation through strategic prompt construction and a bi-directional data augmentation technique. We conduct comprehensive evaluations on multiple datasets, including the widely used Spider benchmark, the newly released BIRD benchmark, robustness-diagnostic benchmarks such as Spider-DK, Spider-Syn, Spider-Realistic, and Dr.Spider, as well as two real-world datasets created for financial and academic applications. The experimental results show that our CodeS achieves new SOTA accuracy and robustness on nearly all challenging text-to-SQL benchmarks.
Funder
National Natural Science Foundation of China
PCC@RUC
National Key Research & Develop Plan
NSF of China
Beijing Natural Science Foundation
Research Funds of Renmin University of China
Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China
Publisher
Association for Computing Machinery (ACM)
Reference87 articles.
1. Rohan Anil Andrew M. Dai Orhan Firat Melvin Johnson Dmitry Lepikhin Alexandre Passos Siamak Shakeri Emanuel Taropa Paige Bailey Zhifeng Chen and et al. 2023. PaLM 2 Technical Report. CoRR abs/2305.10403 (2023). arXiv:2305.10403
2. Global Reasoning over Database Structures for Text-to-SQL Parsing
3. Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, and et al. 2020. Language Models are Few-Shot Learners. In Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6--12, 2020, virtual.
4. ValueNet: A Natural Language-to-SQL System that Learns from Database Information
5. LGESQL: Line Graph Enhanced Text-to-SQL Model with Mixed Local and Non-Local Relations
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献