CodeS: Towards Building Open-source Language Models for Text-to-SQL

Author:

Li Haoyang1ORCID,Zhang Jing1ORCID,Liu Hanbing1ORCID,Fan Ju1ORCID,Zhang Xiaokang1ORCID,Zhu Jun2ORCID,Wei Renjie2ORCID,Pan Hongyan2ORCID,Li Cuiping1ORCID,Chen Hong1ORCID

Affiliation:

1. Renmin University of China, Beijing, China

2. BEIJING AI-FINANCE TECHNOLOGIES CO. LTD, Beijing, China

Abstract

Language models have shown promising performance on the task of translating natural language questions into SQL queries (Text-to-SQL). However, most of the state-of-the-art (SOTA) approaches rely on powerful yet closed-source large language models (LLMs), such as ChatGPT and GPT-4, which may have the limitations of unclear model architectures, data privacy risks, and expensive inference overheads. To address the limitations, we introduce CodeS, a series of pre-trained language models with parameters ranging from 1B to 15B, specifically designed for the text-to-SQL task. CodeS is a fully open-source language model, which achieves superior accuracy with much smaller parameter sizes. This paper studies the research challenges in building CodeS. To enhance the SQL generation abilities of CodeS, we adopt an incremental pre-training approach using a specifically curated SQL-centric corpus. Based on this, we address the challenges of schema linking and rapid domain adaptation through strategic prompt construction and a bi-directional data augmentation technique. We conduct comprehensive evaluations on multiple datasets, including the widely used Spider benchmark, the newly released BIRD benchmark, robustness-diagnostic benchmarks such as Spider-DK, Spider-Syn, Spider-Realistic, and Dr.Spider, as well as two real-world datasets created for financial and academic applications. The experimental results show that our CodeS achieves new SOTA accuracy and robustness on nearly all challenging text-to-SQL benchmarks.

Funder

National Natural Science Foundation of China

PCC@RUC

National Key Research & Develop Plan

NSF of China

Beijing Natural Science Foundation

Research Funds of Renmin University of China

Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China

Publisher

Association for Computing Machinery (ACM)

Reference87 articles.

1. Rohan Anil Andrew M. Dai Orhan Firat Melvin Johnson Dmitry Lepikhin Alexandre Passos Siamak Shakeri Emanuel Taropa Paige Bailey Zhifeng Chen and et al. 2023. PaLM 2 Technical Report. CoRR abs/2305.10403 (2023). arXiv:2305.10403

2. Global Reasoning over Database Structures for Text-to-SQL Parsing

3. Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, and et al. 2020. Language Models are Few-Shot Learners. In Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6--12, 2020, virtual.

4. ValueNet: A Natural Language-to-SQL System that Learns from Database Information

5. LGESQL: Line Graph Enhanced Text-to-SQL Model with Mixed Local and Non-Local Relations

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3