Bregman-style Online Convex Optimization with EnergyHarvesting Constraints

Author:

Asgari Kamiar1,Neely Michael J.1

Affiliation:

1. University of Southern California, Los Angeles, CA, USA

Abstract

This paper considers online convex optimization (OCO) problems where decisions are constrained by available energy resources. A key scenario is optimal power control for an energy harvesting device with a finite capacity battery. The goal is to minimize a time-average loss function while keeping the used energy less than what is available. In this setup, the distribution of the randomly arriving harvestable energy (which is assumed to be i.i.d.) is unknown, the current loss function is unknown, and the controller is only informed by the history of past observations. A prior algorithm is known to achieve $O(\sqrtT )$ regret by using a battery with an $O(\sqrtT )$ capacity. This paper develops a new algorithm that maintains this asymptotic trade-off with the number of time steps T while improving dependency on the dimension of the decision vector from $O(\sqrtn )$ to $O(\sqrtłog(n) )$. The proposed algorithm introduces a separation of the decision vector into amplitude and direction components. It uses two distinct types of Bregman divergence, together with energy queue information, to make decisions for each component.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Safety, Risk, Reliability and Quality,Computer Science (miscellaneous)

Reference44 articles.

1. Jacob D Abernethy Elad Hazan and Alexander Rakhlin. 2009. Competing in the dark: An efficient algorithm for bandit linear optimization. (2009). Jacob D Abernethy Elad Hazan and Alexander Rakhlin. 2009. Competing in the dark: An efficient algorithm for bandit linear optimization. (2009).

2. Mirror descent and nonlinear projected subgradient methods for convex optimization;Beck Amir;Operations Research Letters,2003

3. A learning theoretic approach to energy harvesting communication system optimization;Blasco Pol;IEEE Transactions on Wireless Communications,2013

4. Lecture Notes 2;Bubeck Sébastien,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Competitive Online Age-of-Information Optimization for Energy Harvesting Systems;IEEE INFOCOM 2024 - IEEE Conference on Computer Communications;2024-05-20

2. Online Allocation with Replenishable Budgets: Worst Case and Beyond;Proceedings of the ACM on Measurement and Analysis of Computing Systems;2024-02-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3