Energy-Efficient Development of ML-Enabled Systems: A Data-Centric Approach
Author:
Affiliation:
1. DISIM, University of L'Aquila, L'Aquila, L'Aquila, Italy
Funder
aquila
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3644815.3644974
Reference34 articles.
1. J. Bornholt T. Mytkowicz and K. S. McKinley. 2012. The model is not enough: Understanding energy consumption in mobile devices. Hot Chips 1--3
2. A. Canziani Adam Paszke and E. Culurciello. 2016. An Analysis of Deep Neural Network Models for Practical Applications. ArXiv abs/1605.07678 (2016).
3. A comprehensive study on challenges in deploying deep learning based software
4. Cuijiao Fu Depei Qian and Zhongzhi Luan. 2018. Estimating Software Energy Consumption with Machine Learning Approach by Software Performance Feature. In 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber Physical and Social Computing (CPSCom) and IEEE Smart Data. (SmartData). 490--496. https:/doi.org10.1109Cybermatics_2018.2018.00106
5. Estimation of energy consumption in machine learning
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3