1. Lasse F Wolff Anthony, Benjamin Kanding, and Raghavendra Selvan. 2020. Carbontracker: Tracking and predicting the carbon footprint of training deep learning models. arXiv preprint arXiv:2007.03051 (2020).
2. Radosvet Desislavov, Fernando Martínez-Plumed, and José Hernández-Orallo. 2021. Compute and energy consumption trends in deep learning inference. arXiv preprint arXiv:2109.05472 (2021).
3. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).
4. A Model-based Framework for the Analysis of Software Energy Consumption
5. Raphael Fischer, Matthias Jakobs, and Katharina Morik. 2023. Energy Efficiency Considerations for Popular AI Benchmarks. arXiv preprint arXiv:2304.08359 (2023).