Novel Contract-based Runtime Explainability Framework for End-to-End Ensemble Machine Learning Serving

Author:

Nguyen Minh-Tri1ORCID,Truong Hong-Linh1ORCID,Truong-Huu Tram2ORCID

Affiliation:

1. Department of Computer Science, Aalto University, Espoo, Finland

2. Singapore Institute of Technology, Singapore, Singapore

Publisher

ACM

Reference36 articles.

1. 2023. ROHE -On Optimizing Resources for Real-time End-to-End Machine Learning in Heterogeneous Edges. https://github.com/rdsea/ROHE Accessed on 21-07-2023.

2. Hyrum S Anderson and Phil Roth. 2018. EMBER: An Open Dataset for Training Static PE Malware Machine Learning Models. arXiv preprint arXiv:1804.04637 (2018).

3. Automated Ensemble for Deep Learning Inference on Edge Computing Platforms;Yang Bai;IEEE Internet Things J.,2021

4. Andrew Bell et al. 2022. It's just not that simple: an empirical study of the accuracy-explainability trade-off in machine learning for public policy. In 2022 ACM Conference on Fairness, Accountability, and Transparency. 248--266.

5. Philippe Bracke Anupam Datta Carsten Jung and Shayak Sen. 2019. Machine learning explainability in finance: an application to default risk analysis. (2019).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3