Sensor-based Human Activity Recognition Using Graph LSTM and Multi-task Classification Model
Author:
Affiliation:
1. School of Management, Hefei University of Technology, Anhui, China
2. Jiangsu Provincial Key Laboratory of E-Business, Nanjing University of Finance and Economics, Jiangsu, China
3. School of Computer Science, Wuhan University, Hubei, China
Abstract
Funder
National Natural Science Foundation of China
Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China
Fundamental Research on Advanced Leading Technology Project of Jiangsu Province
Jiangsu Provincial Key Research and Development Program
National Center for International Joint Research on E-Business Information Processing
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture
Link
https://dl.acm.org/doi/pdf/10.1145/3561387
Reference61 articles.
1. The joint use of sequence features combination and modified weighted SVM for improving daily activity recognition
2. Human activity analysis
3. Comparing Sampling Strategies for Tackling Imbalanced Data in Human Activity Recognition
4. Deep activity recognition models with triaxial accelerometers;Alsheikh Mohammad Abu;arXiv preprint arXiv:1511.04664,2015
5. Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge Luis Reyes-Ortiz. 2013. A public domain dataset for human activity recognition using smartphones. In Esann, Vol. 3. 3.
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Spatio-temporal Graph Transformer driven model for recognizing fine-grained data human activity;Alexandria Engineering Journal;2024-10
2. The Deep Learning-based Human Action Recognition System for Competitive Sports;Journal of Imaging Science and Technology;2024-05-01
3. Secure State Estimation for Artificial Neural Networks With Unknown-But-Bounded Noises: A Homomorphic Encryption Scheme;IEEE Transactions on Neural Networks and Learning Systems;2024
4. Maximum margin and global criterion based-recursive feature selection;Neural Networks;2024-01
5. The Deep Transfer Learning for Sensor-Based Human Activity Recognition Using Class Augmentation;2023 2nd International Conference on Futuristic Technologies (INCOFT);2023-11-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3