Algorithms and Lower Bounds for De Morgan Formulas of Low-Communication Leaf Gates

Author:

Kabanets Valentine1,Koroth Sajin1,Lu Zhenjian2,Myrisiotis Dimitrios3,Oliveira Igor C.2

Affiliation:

1. Simon Fraser University, Burnaby, BC, Canada

2. University of Warwick, Coventry, UK

3. Imperial College London, London, UK

Abstract

The class FORMULA[s]∘G consists of Boolean functions computable by size- s De Morgan formulas whose leaves are any Boolean functions from a class G. We give lower bounds and (SAT, Learning, and pseudorandom generators ( PRG s )) algorithms for FORMULA[n 1.99 ]∘G, for classes G of functions with low communication complexity . Let R (k) G be the maximum k -party number-on-forehead randomized communication complexity of a function in G. Among other results, we show the following: The Generalized Inner Product function GIP k n cannot be computed in FORMULA[s]° G on more than 1/2+ε fraction of inputs for s=o(n 2 /k⋅4 k ⋅R (k) (G)⋅log⁡(n/ε)⋅log⁡(1/ε)) 2 ). This significantly extends the lower bounds against bipartite formulas obtained by [62]. As a corollary, we get an average-case lower bound for GIP k n against FORMULA[n 1.99 ]∘PTF k −1 , i.e., sub-quadratic-size De Morgan formulas with degree-k-1) PTF ( polynomial threshold function ) gates at the bottom. Previously, it was open whether a super-linear lower bound holds for AND of PTFs. There is a PRG of seed length n/2+O(s⋅R (2) (G)⋅log⁡(s/ε)⋅log⁡(1/ε)) that ε-fools FORMULA[s]∘G. For the special case of FORMULA[s]∘LTF, i.e., size- s formulas with LTF ( linear threshold function ) gates at the bottom, we get the better seed length O(n 1/2 ⋅s 1/4 ⋅log⁡(n)⋅log⁡(n/ε)). In particular, this provides the first non-trivial PRG (with seed length o(n)) for intersections of n halfspaces in the regime where ε≤1/n, complementing a recent result of [45]. There exists a randomized 2 n-t #SAT algorithm for FORMULA[s]∘G, where t=Ω(n\√s⋅log 2 ⁡(s)⋅R (2) (G))/1/2. In particular, this implies a nontrivial #SAT algorithm for FORMULA[n 1.99 ]∘LTF. The Minimum Circuit Size Problem is not in FORMULA[n 1.99 ]∘XOR; thereby making progress on hardness magnification, in connection with results from [14, 46]. On the algorithmic side, we show that the concept class FORMULA[n 1.99 ]∘XOR can be PAC-learned in time 2 O(n/log n) .

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Theory and Mathematics,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Beyond Natural Proofs: Hardness Magnification and Locality;Journal of the ACM;2022-08-23

2. Fooling Constant-Depth Threshold Circuits (Extended Abstract);2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS);2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3