A fast algorithm to generate open meandric systems and meanders

Author:

Bobier Bruce1,Sawada Joe2

Affiliation:

1. University of Waterloo, Ont., Canada

2. University of Guelph, Guleph, Ont., Canada

Abstract

An open meandric system is a planar configuration of acyclic curves crossing an infinite horizontal line in the plane such that the curves may extend in both horizontal directions. We present a fast, recursive algorithm to exhaustively generate open meandric systems with n crossings. We then illustrate how to modify the algorithm to generate unidirectional open meandric systems (the curves extend only to the right) and nonisomorphic open meandric systems where equivalence is taken under horizontal reflection. Each algorithm can be modified to generate systems with exactly k curves. In the unidirectional case when k = 1, we can apply a minor modification along with some additional optimization steps to yield the first fast and simple algorithm to generate open meanders.

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Reference18 articles.

1. Bounds for the growth rate of meander numbers

2. A branched covering of CP2?S 4, hyperbolicity and projectivity topology

3. Bacher R. 1999. Meander algebras. http://www-fourier.uif-gremble.fr/PUBLIS/publications/ReF_478.pdf. Bacher R. 1999. Meander algebras. http://www-fourier.uif-gremble.fr/PUBLIS/publications/ReF_478.pdf.

4. Croix M. L. 2003. Approaches to the enumerative theory of meanders. Master's Essay University of Waterloo Canada. Croix M. L. 2003. Approaches to the enumerative theory of meanders. Master's Essay University of Waterloo Canada.

5. Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Branch Decompositions

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Meanders: A personal perspective to the memory of Pierre Rosenstiehl;European Journal of Combinatorics;2023-09

2. Generating Cyclic Rotation Gray Codes for Stamp Foldings and Semi-meanders;Lecture Notes in Computer Science;2023

3. Enumerating meandric systems with large number of loops;Annales de l’Institut Henri Poincaré D;2019-09-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3