Optimization problems in multiple-interval graphs

Author:

Butman Ayelet1,Hermelin Danny2,Lewenstein Moshe3,Rawitz Dror4

Affiliation:

1. Holon Institute of Technology, Holon, Israel

2. University of Haifa, Haifa, Israel

3. Bar Ilan University, Ramat Gan, Israil

4. Tel Aviv University, Tel Aviv, Israel

Abstract

Multiple-interval graphs are a natural generalization of interval graphs where each vertex may have more then one interval associated with it. We initiate the study of optimization problems in multiple-interval graphs by considering three classical problems: Minimum Vertex Cover, Minimum Dominating Set, and Maximum Clique. We describe applications for each one of these problems, and then proceed to discuss approximation algorithms for them. Our results can be summarized as follows: Let t be the number of intervals associated with each vertex in a given multiple-interval graph. For Minimum Vertex Cover, we give a (2−1/ t )-approximation algorithm which also works when a t -interval representation of our given graph is absent. Following this, we give a t 2 -approximation algorithm for Minimum Dominating Set which adapts well to more general variants of the problem. We then proceed to prove that Maximum Clique is NP -hard already for 3-interval graphs, and provide a ( t 2t +1)/2-approximation algorithm for general values of t ≥ 2, using bounds proven for the so-called transversal number of t -interval families.

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Reference42 articles.

1. Agarwal P. van Kreveld M. and Suri S. 1998. Label placement by maximum independent set in rectangles. Computat. Geom. Theory Appl. 11. 10.1016/S0925-7721(98)00028-5 Agarwal P. van Kreveld M. and Suri S. 1998. Label placement by maximum independent set in rectangles. Computat. Geom. Theory Appl. 11. 10.1016/S0925-7721(98)00028-5

2. Piercing d -Intervals

3. Nonoverlapping local alignments (weighted independent sets of axis-parallel rectangles)

4. A unified approach to approximating resource allocation and scheduling

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3