Fast Search of Lightweight Block Cipher Primitives via Swarm-like Metaheuristics for Cyber Security

Author:

Jin Xin1,Duan Yuwei2,Zhang Ying2,Huang Yating2,Li Mengdong2,Mao Ming2,Singh Amit Kumar3,Li Yujie4

Affiliation:

1. Beijing Electronic Science and Technology Institute, China and State Key Laboratory of Cryptology, Beijing, China

2. Beijing Electronic Science and Technology Institute, Beijing, China

3. National Institute of Technology Patna, Patna, Bihar, India

4. Kyushu Institute of Technology, Kitakyushu City, Fukuoka Prefecture, Japan

Abstract

With the construction and improvement of 5G infrastructure, more devices choose to access the Internet to achieve some functions. People are paying more attention to information security in the use of network devices. This makes lightweight block ciphers become a hotspot. A lightweight block cipher with superior performance can ensure the security of information while reducing the consumption of device resources. Traditional optimization tools, such as brute force or random search, are often used to solve the design of Symmetric-Key primitives. The metaheuristic algorithm was first used to solve the design of Symmetric-Key primitives of SKINNY. The genetic algorithm and the simulated annealing algorithm are used to increase the number of active S-boxes in SKINNY, thus improving the security of SKINNY. Based on this, to improve search efficiency and optimize search results, we design a novel metaheuristic algorithm, named particle swarm-like normal optimization algorithm (PSNO) to design the Symmetric-Key primitives of SKINNY. With our algorithm, one or better algorithm components can be obtained more quickly. The results in the experiments show that our search results are better than those of the genetic algorithm and the simulated annealing algorithm. The search efficiency is significantly improved. The algorithm we proposed can be generalized to the design of Symmetric-Key primitives of other lightweight block ciphers with clear evaluation indicators, where the corresponding indicators can be used as the objective functions.

Funder

National Natural Science Foundation of China

Open Project Program of State Key Laboratory of Cryptology

Beijing Natural Science Foundation

Open Project Program of State Key Laboratory of Virtual Reality Technology and Systems, Beihang University

Fundamental Research Funds for the Central Universities

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference22 articles.

1. The SIMON and SPECK families of lightweight block ciphers;Beaulieu Ray;IACR Cryptol. ePrint Arch.,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3