Accurate Analysis and Prediction of Enterprise Service-Level Performance

Author:

Duan Qing1,Koneru Abhishek2,Zeng Jun3,Chakrabarty Krishnendu2,Dispoto Gary3

Affiliation:

1. Duke University, San Jose, CA

2. Duke University, Durham, NC

3. Hewlett Packard Labs, Palo Alto, CA

Abstract

An enterprise service-level performance time series is a sequence of data points that quantify demand, throughput, average order-delivery time, quality of service, or end-to-end cost. Analytical and predictive models of such time series can be embedded into an enterprise information system (EIS) in order to provide meaningful insights into potential business problems and generate guidance for appropriate solutions. Time-series analysis includes periodicity detection, decomposition, and correlation analysis. Time-series prediction can be modeled as a regression problem to forecast a sequence of future time-series datapoints based on the given time series. The state-of-the-art (baseline) methods employed in time-series prediction generally apply advanced machine-learning algorithms. In this article, we propose a new univariate method for dealing with midterm time-series prediction. The proposed method first analyzes the hierarchical periodic structure in one time series and decomposes it into trend, season, and noise components. By discarding the noise component, the proposed method only focuses on predicting repetitive season and smoothed trend components. As a result, this method significantly improves upon the performance of baseline methods in midterm time-series prediction. Moreover, we propose a new multivariate method for dealing with short-term time-series prediction. The proposed method utilizes cross-correlation information derived from multiple time series. The amount of data taken from each time series for training the regression model is determined by results from hierarchical cross-correlation analysis. Such a data-filtering strategy leads to improved algorithm efficiency and prediction accuracy. By combining statistical methods with advanced machine-learning algorithms, we have achieved a significantly superior performance in both short-term and midterm time-series predictions compared to state-of-the-art (baseline) methods.

Funder

HP Labs Open Innovation Research Program

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Reference42 articles.

1. Real-time analysis and management of big time-series data

2. Reducing test cost of integrated, heterogeneous systems using pass-fail test data analysis

3. Generalized autoregressive conditional heteroskedasticity

4. G. E. P. Box G. Jenkins and G. Reinsel. 1994. Time Series Analysis: Forecasting and Control (3rd ed.). Prentice Hall Upper Saddle River NJ. G. E. P. Box G. Jenkins and G. Reinsel. 1994. Time Series Analysis: Forecasting and Control (3rd ed.). Prentice Hall Upper Saddle River NJ.

5. Support vector machine with adaptive parameters in financial time series forecasting

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3