GANs in the Panorama of Synthetic Data Generation Methods

Author:

Vaz Bruno1ORCID,Figueira Álvaro2ORCID

Affiliation:

1. Faculty of Sciences, University of Porto, Porto, Portugal

2. Computer Science, University of Porto, Porto, Portugal

Abstract

This paper focuses on the creation and evaluation of synthetic data to address the challenges of imbalanced datasets in machine learning applications (ML), using fake news detection as a case study. We conducted a thorough literature review on generative adversarial networks (GANs) for tabular data, synthetic data generation methods, and synthetic data quality assessment. By augmenting a public news dataset with synthetic data generated by different GAN architectures, we demonstrate the potential of synthetic data to improve ML models’ performance in fake news detection. Our results show a significant improvement in classification performance, especially in the underrepresented class. We also modify and extend a data usage approach to evaluate the quality of synthetic data and investigate the relationship between synthetic data quality and data augmentation performance in classification tasks. We found a positive correlation between synthetic data quality and performance in the underrepresented class, highlighting the importance of high-quality synthetic data for effective data augmentation.

Publisher

Association for Computing Machinery (ACM)

Reference83 articles.

1. Abowd, J. M., & Vilhuber, L. (2011). Synthetic establishment microdata around the world. Statistical Journal of the IAOS, 28(1-2), 59-68.

2. MFC-GAN: Class-imbalanced dataset classification using Multiple Fake Class Generative Adversarial Network

3. Adamu Ali-Gombe, Eyad Elyan, Yann Savoye, and Chrisina Jayne. Few-shot classifier gan. In 2018 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2018.

4. Ahmed M. Alaa, Boris van Breugel, Evgeny Saveliev, and Mihaela van der Schaar. How faithful is your synthetic data? sample-level metrics for evaluating and auditing generative models, 2021.

5. Akash Srivastava, Lazar Valkov, Chris Russell, Michael U Gutmann, and Charles Sutton. Veegan: Reducing mode collapse in gans using implicit variational learning. Advances in neural information processing systems, 30, 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3