Learning the User’s Deeper Preferences for Multi-modal Recommendation Systems

Author:

Lei Fei1ORCID,Cao Zhongqi1ORCID,Yang Yuning1ORCID,Ding Yibo1ORCID,Zhang Cong1ORCID

Affiliation:

1. Beijing University of Technology, Beijing, China

Abstract

Recommendation system plays an important role in the rapid development of micro-video sharing platform. Micro-video has rich modal features, such as visual, audio, and text. It is of great significance to carry out personalized recommendation by integrating multi-modal features. However, most of the current multi-modal recommendation systems can only enrich the feature representation on the item side, while it leads to poor learning of user preferences. To solve this problem, we propose a novel module named Learning the User’s Deeper Preferences (LUDP) , which constructs the item-item modal similarity graph and user preference graph in each modality to explore the learning of item and user representation. Specifically, we construct item-item similar modalities graph using multi-modal features, the item ID embedding is propagated and aggregated on the graph to learn the latent structural information of items; The user preference graph is constructed through the historical interaction between the user and item, on which the multi-modal features are aggregated as the user’s preference for the modal. Finally, combining the two parts as auxiliary information enhances the user and item representation learned from the collaborative signals to learn deeper user preferences. Through a large number of experiments on two public datasets (TikTok, Movielens), our model is proved to be superior to the most advanced multi-modal recommendation methods.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference43 articles.

1. Multimodal Machine Learning: A Survey and Taxonomy

2. Graph convolutional matrix completion;Berg Rianne van den;arXiv preprint arXiv:1706.02263,2017

3. Attentive Collaborative Filtering

4. Context-aware Image Tweet Modelling and Recommendation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3