Affiliation:
1. University of Ioannina, Greece
2. Princeton University and Intertrust Technologies, Princeton, NJ
Abstract
How does one verify that the output of a complicated program is correct? One can formally prove that the program is correct, but this may be beyond the power of existing methods. Alternatively, one can check that the output produced for a particular input satisfies the desired input--output relation by running a checker on the input--output pair. Then one only needs to prove the correctness of the checker. For some problems, however, even such a checker may be too complicated to formally verify. There is a third alternative: augment the original program to produce not only an output but also a
correctness certificate
, with the property that a very simple program (whose correctness is easy to prove) can use the certificate to verify that the input--output pair satisfies the desired input--output relation.
We consider the following important instance of this general question: How does one verify that the dominator tree of a flow graph is correct? Existing fast algorithms for finding dominators are complicated, and even verifying the correctness of a dominator tree in the absence of additional information seems complicated. We define a correctness certificate for a dominator tree, show how to use it to easily verify the correctness of the tree, and show how to augment fast dominator-finding algorithms so that they produce a correctness certificate. We also relate the dominator certificate problem to the problem of finding divergent spanning trees in a flow graph, and we develop algorithms to find such trees. All our algorithms run in linear time. Previous algorithms apply just to the special case of only trivial dominators, and they take at least quadratic time.
Publisher
Association for Computing Machinery (ACM)
Subject
Mathematics (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献