Optimizing with Attractor: A Tutorial

Author:

Li Weiqi1ORCID

Affiliation:

1. University of Michigan, Flint, USA

Abstract

This tutorial presents a novel search system—the Attractor-Based Search System (ABSS)—that can solve the Traveling Salesman Problem very efficiently with optimality guarantee. From the perspective of dynamical systems, a heuristic local search algorithm for an NP-complete combinatorial problem is a discrete dynamical system. In a local search system, an attractor drives the search trajectories into the vicinity of a globally optimal point in the solution space, and the convergence of local search trajectories makes the search system become a global and deterministic system. The attractor contains a small set of the most promising solutions to the problem. The attractor can reduce the problem size exponentially, and thus make the exhaustive search feasible. Therefore, this new search paradigm is called optimizing with attractor. The ABSS consists of two search phases: local search phase and exhaustive search phase. The local search process is used to quickly construct the attractor in the solution space, and the exhaustive search process is used to completely search the attractor to identify the optimal solution. Therefore, the exact optimal solution can be found quickly by combining local search and exhaustive search. This tutorial introduces the concept of an attractor in a local search system, and describes the process of optimizing with the attractor, using the Traveling Salesman Problem as the study platform.

Publisher

Association for Computing Machinery (ACM)

Reference120 articles.

1. Emile H. L. Aarts and Jan K. Lenstra. 2003. Local Search in Combinatorial Optimization. Princeton University Press, Princeton.

2. Kathleen T. Alligood, Tim D. Sauer, and James A. Yorke. 1997. Chaos: Introduction to Dynamical Systems. Springer, New York.

3. David L. Applegate, Robert E. Bixby, Vašek Chvátal, and William J. Cook. 2006. The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton, NJ, USA.

4. David L. Applegate Robert E. Bixby Vašek Chvátal and William J. Cook. Concorde website. (March 2015). Retrieved November 15 2023 from https://www.math.uwaterloo.ca/tsp/concorde/index.html

5. Sanjeev Arora and Boaz Barak. 2009. Computational Complexity: A Modern Approach. Cambridge University Press, Cambridge.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3