Mean Waiting Time in Large-Scale and Critically Loaded Power of d Load Balancing Systems

Author:

Hellemans Tim1,Van Houdt Benny1

Affiliation:

1. University of Antwerp, Antwerp, Belgium

Abstract

Mean field models are a popular tool used to analyse load balancing policies. In some exceptional cases the waiting time distribution of the mean field limit has an explicit form. In other cases it can be computed as the solution of a set of differential equations. In this paper we study the limit of the mean waiting time E[Wλ] as the arrival rate λ approaches 1 for a number of load balancing policies in a large-scale system of homogeneous servers which finish work at a constant rate equal to one and exponential job sizes with mean 1 (i.e. when the system gets close to instability). As E[Wλ] diverges to infinity, we scale with -log(1-λ) and present a method to compute the limit limλ-> 1- -E[Wλ]/l(1-λ). We show that this limit has a surprisingly simple form for the load balancing algorithms considered. More specifically, we present a general result that holds for any policy for which the associated differential equation satisfies a list of assumptions. For the well-known LL(d) policy which assigns an incoming job to a server with the least work left among d randomly selected servers these assumptions are trivially verified. For this policy we prove the limit is given by 1/d-1. We further show that the LL(d,K) policy, which assigns batches of K jobs to the K least loaded servers among d randomly selected servers, satisfies the assumptions and the limit is equal to K/d-K. For a policy which applies LL(di) with probability pi, we show that the limit is given by 1/ ∑i pi di - 1. We further indicate that our main result can also be used for load balancers with redundancy or memory. In addition, we propose an alternate scaling -l(pλ) instead of -l(1-λ), where pλ is adapted to the policy at hand, such that limλ-> 1- -E[Wλ]/l(1-λ)=limλ-> 1- -E[Wλ]/l(pλ), where the limit limλ-> 0+ -E[Wλ]/l(pλ) is well defined and non-zero (contrary to limλ-> 0+ -E[Wλ]/l(1-λ)). This allows to obtain relatively flat curves for -E[Wλ]/l(pλ) for λ ∈ [0,1] which indicates that the low and high load limits can be used as an approximation when λ is close to one or zero. Our results rely on the earlier proven ansatz which asserts that for certain load balancing policies the workload distribution of any finite set of queues becomes independent of one another as the number of servers tends to infinity.

Funder

FWO

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Safety, Risk, Reliability and Quality,Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3