Distributed Learning of Process Models for Next Activity Prediction
Author:
Affiliation:
1. University of Bari Aldo Moro and CINI
2. University of Bari Aldo Moro and Exprivia S.p.A.
3. University of Bari Aldo Moro
Publisher
ACM Press
Reference9 articles.
1. M. Ceci and A. Appice. Spatial associative classification: propositional vs structural approach. J. Intell. Inf. Syst., 27(3):191--213, 2006.
2. M. Ceci, P. F. Lanotte, F. Fumarola, D. P. Cavallo, and D. Malerba. Completion time and next activity prediction of processes using sequential pattern mining. In S. Dzeroski, P. Panov, D. Kocev, and L. Todorovski, editors, Discovery Science - 17th International Conference, DS 2014, Bled, Slovenia, October 8-10, 2014. Proceedings, volume 8777 of Lecture Notes in Computer Science, pages 49--61. Springer, 2014.
3. H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. The Annals of Mathematical Statistics, pages 493--507, Vol. 23, No. 4 (Dec. 1952).
4. F. Fumarola, P. F. Lanotte, M. Ceci, and D. Malerba. Clofast: closed sequential pattern mining using sparse and vertical id-lists. Knowl. Inf. Syst., 48(2):429--463, 2016.
5. F. Fumarola and D. Malerba. A parallel algorithm for approximate frequent itemset mining using mapreduce. In International Conference on High Performance Computing & Simulation, HPCS 2014, Bologna, Italy, 21-25 July, 2014, pages 335--342. IEEE, 2014.
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Prediction of Next Events in Business Processes: A Deep Learning Approach;IFIP Advances in Information and Communication Technology;2024
2. A Process Mining Framework Based on Deep Learning Feature Fusion;2022 41st Chinese Control Conference (CCC);2022-07-25
3. Convolutional Neural Networks in Process Mining and Data Analytics for Prediction Accuracy;Electronics;2022-07-07
4. Predicting Process Activities and Timestamps with Entity-Embeddings Neural Networks;Research Challenges in Information Science;2021
5. A Framework of Business Process Monitoring and Prediction Techniques;Lecture Notes in Information Systems and Organisation;2021
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3