1. Optimal checkpointing for heterogeneous chains: How to train deep neural networks with limited memory;Beaumont Olivier;CoRR,2019
2. Olivier Beaumont, Lionel Eyraud-Dubois, and Alena Shilova. 2021. Efficient combination of rematerialization and offloading for training DNNs. In Proceeding of the Advances in Neural Information Processing Systems (NeurIPS), Marc.Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (Eds.). Curran Associates, Inc., 23844–23857.
3. Training deep nets with sublinear memory cost;Chen Tianqi;CoRR,2016
4. Aidan N. Gomez, Mengye Ren, Raquel Urtasun, and Roger B. Grosse. 2017. The reversible residual network: Backpropagation without storing activations. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17), Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.). Curran Associates Inc., 2211–2221.
5. Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation