Weakly Supervised Video Object Segmentation via Dual-attention Cross-branch Fusion

Author:

Wei Lili1,Lang Congyan1ORCID,Liang Liqian1,Feng Songhe1ORCID,Wang Tao1,Chen Shidi1

Affiliation:

1. the Beijing Key Laboratory of Traffic Data Analysis and Mining, School of Computerand Information Technology, Beijing Jiaotong University, Beijing, China

Abstract

Recently, concerning the challenge of collecting large-scale explicitly annotated videos, weakly supervised video object segmentation (WSVOS) using video tags has attracted much attention. Existing WSVOS approaches follow a general pipeline including two phases, i.e., a pseudo masks generation phase and a refinement phase. To explore the intrinsic property and correlation buried in the video frames, most of them focus on the later phase by introducing optical flow as temporal information to provide more supervision. However, these optical flow-based studies are greatly affected by illumination and distortion and lack consideration of the discriminative capacity of multi-level deep features. In this article, with the goal of capturing more effective temporal information and investigating a temporal information fusion strategy accordingly, we propose a unified WSVOS model by adopting a two-branch architecture with a multi-level cross-branch fusion strategy, named as dual-attention cross-branch fusion network (DACF-Net). Concretely, the two branches of DACF-Net, i.e., a temporal prediction subnetwork (TPN) and a spatial segmentation subnetwork (SSN), are used for extracting temporal information and generating predicted segmentation masks, respectively. To perform the cross-branch fusion between TPN and SSN, we propose a dual-attention fusion module that can be plugged into the SSN flexibly. We also pose a cross-frame coherence loss (CFCL) to achieve smooth segmentation results by exploiting the coherence of masks produced by TPN and SSN. Extensive experiments demonstrate the effectiveness of proposed approach compared with the state-of-the-arts on two challenging datasets, i.e., Davis-2016 and YouTube-Objects.

Funder

Beijing Natural Science Foundation

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Soft Hybrid Knowledge Distillation against deep neural networks;Neurocomputing;2024-02

2. A systematic review of deep learning frameworks for moving object segmentation;Multimedia Tools and Applications;2023-08-09

3. Fast Real-Time Video Object Segmentation with a Tangled Memory Network;ACM Transactions on Intelligent Systems and Technology;2023-04-13

4. A Weakly Supervised Learning Framework for Salient Object Detection via Hybrid Labels;IEEE Transactions on Circuits and Systems for Video Technology;2023-02

5. Weakly Annotated Residential Area Segmentation Based on Attention Redistribution and Co-Learning;IEEE Geoscience and Remote Sensing Letters;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3