Affiliation:
1. Southwest University, Beibei Qu, Chongqing Shi, China
2. Capital Normal University, Haidian Qu, Beijing Shi, China
Abstract
The rejoining of oracle bone rubbings is a fundamental topic for oracle research. However, it is a tough task to reassemble severely broken oracle bone rubbings because of detail loss in manual labeling, the great time consumption of rejoining, and the low accuracy of results. To overcome the challenges, we introduce a novel CFDA&CAP algorithm that consists of the Curve Fitting Degree Analysis (CFDA) algorithm and the Correlation Analysis of Pearson (CAP) algorithm. First, the orthogonalization system is constructed to extract local features based on the curve features analysis. Second, the global feature descriptor is depicted by using coordinate points sequences. Third, we screen candidate curves based on the features as well as the CFDA algorithm, so the search range of the candidates is narrowed down. Finally, image recommendation libraries for target curves are generated by adopting the CAP algorithm, and the rank for each target matching curve generates simultaneously for result evaluation. With experiments, the proposed method shows a good effect in rejoining oracle bone rubbings automatically: (1) it improves the average accuracy rate of curve matching up to 84%, and (2) for a low-resource task, the accuracy of our method has 25% higher accuracy than that of other methods.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Chongqing Postdoctoral Science Foundation
Fundamental Research Funds for the Central Universities, China
National Social Science Foundation of China
Chongqing Key Laboratory of Automatic Reasoning and Cognition, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences
Publisher
Association for Computing Machinery (ACM)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献