How java programs interact with virtual machines at the microarchitectural level

Author:

Eeckhout Lieven1,Georges Andy1,De Bosschere Koen1

Affiliation:

1. Ghent University, Gent, Belgium

Abstract

Java workloads are becoming increasingly prominent on various platforms ranging from embedded systems, over general-purpose computers to high-end servers. Understanding the implications of all the aspects involved when running Java workloads, is thus extremely important during the design of a system that will run such workloads. In other words, understanding the interaction between the Java application, its input and the virtual machine it runs on, is key to a succesful design. The goal of this paper is to study this complex interaction at the microarchitectural level, e.g., by analyzing the branch behavior, the cache behavior, etc. This is done by measuring a large number of performance characteristics using performance counters on an AMD K7 Duron microprocessor. These performance characteristics are measured for seven virtual machine configurations, and a collection of Java benchmarks with corresponding inputs coming from the SPECjvm98 benchmark suite, the SPECjbb2000 benchmark suite, the Java Grande Forum benchmark suite and an open-source raytracer, called Raja with 19 scene descriptions. This large amount of data is further analyzed using statistical data analysis techniques, namely principal components analysis and cluster analysis. These techniques provide useful insights in an understandable way.From our experiments, we conclude that (i) the behavior observed at the microarchitectural level is primarily determined by the virtual machine for small input sets, e.g., the SPECjvm98 s1 input set; (ii) the behavior can be quite different for various input sets, e.g., short-running versus long-running benchmarks; (iii) for long-running benchmarks with few hot spots, the behavior can be primarily determined by the Java program and not the virtual machine, i.e., all the virtual machines optimize the hot spots to similarly behaving native code; (iv) in general, the behavior of a Java application running on one virtual machine can be significantly different from running on another virtual machine. These conclusions warn researchers working on Java workloads to be careful when using a limited number of Java benchmarks or virtual machines since this might lead to biased conclusions.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference25 articles.

1. Advanced Micro Devices Inc. AMD Athlon Processor x86 Code Optimization Guide February 2002. http://www.amd.com Advanced Micro Devices Inc. AMD Athlon Processor x86 Code Optimization Guide February 2002. http://www.amd.com

2. The Jalapeño virtual machine

3. Adaptive optimization in the Jalapeño JVM

4. SimpleScalar: an infrastructure for computer system modeling

5. Java server benchmarks

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using Performance Event Profiles to Deduce an Execution Model of MATLAB with Just-In-Time Compilation;Languages and Compilers for Parallel Computing;2021

2. A Rigorous Benchmarking and Performance Analysis Methodology for Python Workloads;2020 IEEE International Symposium on Workload Characterization (IISWC);2020-10

3. COCOA: A Synthetic Data Generator for Testing Anonymization Techniques;Privacy in Statistical Databases;2016

4. Integration of Various Health Record Systems;Handbook of Medical and Healthcare Technologies;2013

5. Waste not, want not;ACM SIGPLAN Notices;2011-11-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3