Affiliation:
1. ENS Lyon
2. University of Tennessee Knoxville and Oak Ridge National Laboratory and University of Manchester
3. University of Tennessee Knoxville
4. The MathWorks
Abstract
By using a combination of 32-bit and 64-bit floating point arithmetic, the performance of many sparse linear algebra algorithms can be significantly enhanced while maintaining the 64-bit accuracy of the resulting solution. These ideas can be applied to sparse multifrontal and supernodal direct techniques and sparse iterative techniques such as Krylov subspace methods. The approach presented here can apply not only to conventional processors but also to exotic technologies such as Field Programmable Gate Arrays (FPGA), Graphical Processing Units (GPU), and the Cell BE processor.
Publisher
Association for Computing Machinery (ACM)
Subject
Applied Mathematics,Software
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献