ReputationPro

Author:

Zhang Haibin1,Wang Yan1,Zhang Xiuzhen2,Lim Ee-Peng3

Affiliation:

1. Macquarie University, Sydney, Australia

2. RMIT University, Melbourne, Australia

3. Singapore Management University, Singapore

Abstract

In e-commerce environments, the trustworthiness of a seller is utterly important to potential buyers, especially when a seller is not known to them. Most existing trust evaluation models compute a single value to reflect the general trustworthiness of a seller without taking any transaction context information into account. With such a result as the indication of reputation, a buyer may be easily deceived by a malicious seller in a transaction where the notorious value imbalance problem is involved—in other words, a malicious seller accumulates a high-level reputation by selling cheap products and then deceives buyers by inducing them to purchase more expensive products. In this article, we first present a trust vector consisting of three values for contextual transaction trust (CTT). In the computation of CTT values, three identified important context dimensions , including Product Category, Transaction Amount, and Transaction Time, are taken into account. In the meantime, the computation of each CTT value is based on both past transactions and the forthcoming transaction. In particular, with different parameters specified by a buyer regarding context dimensions, different sets of CTT values can be calculated. As a result, all of these trust values can outline the reputation profile of a seller that indicates the dynamic trustworthiness of a seller in different products, product categories, price ranges, time periods, and any necessary combination of them. We name this new model ReputationPro . Nevertheless, in ReputationPro , the computation of reputation profile requires new data structures for appropriately indexing the precomputation of aggregates over large-scale ratings and transaction data in three context dimensions, as well as novel algorithms for promptly answering buyers’ CTT queries. In addition, storing precomputed aggregation results consumes a large volume of space, particularly for a system with millions of sellers. Therefore, reducing storage space for aggregation results is also a great demand. To solve these challenging problems, we first propose a new index scheme CMK-tree by extending the two-dimensional K-D-B-tree that indexes spatial data to support efficient computation of CTT values. Then, we further extend the CMK-tree and propose a CMK-tree RS approach to reducing the storage space allocated to each seller. The two approaches are not only applicable to three context dimensions that are either linear or hierarchical but also take into account the characteristics of the transaction-time model—that is, transaction data is inserted in chronological order. Moreover, the proposed data structures can index each specific product traded in a time period to compute the trustworthiness of a seller in selling a product. Finally, the experimental results illustrate that the CMK-tree is superior in efficiency of computing CTT values to all three existing approaches in the literature. In particular, while answering a buyer’s CTT queries for each brand-based product category, the CMK-tree has almost linear query performance. In addition, with significantly reduced storage space, the CMK-tree RS approach can further improve the efficiency in computing CTT values. Therefore, our proposed ReputationPro model is scalable to large-scale e-commerce Web sites in terms of efficiency and storage space consumption.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trustworthy Recommender Systems;ACM Transactions on Intelligent Systems and Technology;2023-10-13

2. Enterprise E-Commerce Marketing System Based on Big Data Methods of Maintaining Social Relations in the Process of E-Commerce Environmental Commodity;Journal of Organizational and End User Computing;2021-11

3. The Use of Trust Seals in European and Latin American Commercial Transactions;Journal of Open Innovation: Technology, Market, and Complexity;2021-06-08

4. Decentralized Trust Management;ACM Computing Surveys;2021-01-31

5. Light activated shape memory polymers and composites: A review;European Polymer Journal;2020-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3