Risk of Stochastic Systems for Temporal Logic Specifications

Author:

Lindemann Lars1ORCID,Jiang Lejun2ORCID,Matni Nikolai3ORCID,Pappas George J.3ORCID

Affiliation:

1. University of Southern California, Los Angeles, CA, USA

2. Nuro, Mountain View, CA USA

3. University of Pennsylvania, Philadelphia, Pennsylvania, USA

Abstract

The wide availability of data coupled with the computational advances in artificial intelligence and machine learning promise to enable many future technologies such as autonomous driving. While there has been a variety of successful demonstrations of these technologies, critical system failures have repeatedly been reported. Even if rare, such system failures pose a serious barrier to adoption without a rigorous risk assessment. This article presents a framework for the systematic and rigorous risk verification of systems. We consider a wide range of system specifications formulated in signal temporal logic (STL) and model the system as a stochastic process, permitting discrete-time and continuous-time stochastic processes. We then define the STL robustness risk as the risk of lacking robustness against failure . This definition is motivated as system failures are often caused by missing robustness to modeling errors, system disturbances, and distribution shifts in the underlying data generating process. Within the definition, we permit general classes of risk measures and focus on tail risk measures such as the value-at-risk and the conditional value-at-risk. While the STL robustness risk is in general hard to compute, we propose the approximate STL robustness risk as a more tractable notion that upper bounds the STL robustness risk. We show how the approximate STL robustness risk can accurately be estimated from system trajectory data. For discrete-time stochastic processes, we show under which conditions the approximate STL robustness risk can even be computed exactly. We illustrate our verification algorithm in the autonomous driving simulator CARLA and show how a least risky controller can be selected among four neural network lane-keeping controllers for five meaningful system specifications.

Funder

NSF

NSF CAREER

Google Research Scholar award

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference85 articles.

1. A Survey of Statistical Model Checking

2. Risk-Averse Control via CVaR Barrier Functions: Application to Bipedal Robot Locomotion

3. Time Robustness in MTL and Expressivity in Hybrid System Falsification

4. Being Correct Is Not Enough: Efficient Verification Using Robust Linear Temporal Logic

5. Nasim Baharisangari, Jean-Raphaël Gaglione, Daniel Neider, Ufuk Topcu, and Zhe Xu. 2021. Uncertainty-aware signal temporal logic inference. In Software Verification. Springer, 61–85.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3