Learning Recommender Systems with Implicit Feedback via Soft Target Enhancement
Author:
Affiliation:
1. University of Science and Technology of China, Hefei, China
2. Westlake University & Tencent Inc., Hangzhou, China
3. JD Inc, Beijing, China
Funder
This research was partially supported by grants from the National Key Research and Development Program of China (No. 2018YFC0832101), and the National Natural Science Foundation of China (Grants No. 61922073, U20A20229, 61976198 and 62022077), and the Fundamental Research Funds for the Central Universities.
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3404835.3462863
Reference59 articles.
1. A Neural Collaborative Filtering Model with Interaction-based Neighborhood
2. Immanuel Bayer Xiangnan He Bhargav Kanagal and Steffen Rendle. 2017. A generic coordinate descent framework for learning from implicit feedback. In WWW. 1341--1350. Immanuel Bayer Xiangnan He Bhargav Kanagal and Steffen Rendle. 2017. A generic coordinate descent framework for learning from implicit feedback. In WWW. 1341--1350.
3. Yoshua Bengio Jean-Sébastien Senécal etal 2003. Quick Training of Probabilistic Neural Nets by Importance Sampling.. In AISTATS. 1--9. Yoshua Bengio Jean-Sébastien Senécal et al. 2003. Quick Training of Probabilistic Neural Nets by Importance Sampling.. In AISTATS. 1--9.
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Soft Contrastive Learning for Implicit Feedback Recommendations;Lecture Notes in Computer Science;2024
2. Decoupled Progressive Distillation for Sequential Prediction with Interaction Dynamics;ACM Transactions on Information Systems;2023-12-29
3. A general tail item representation enhancement framework for sequential recommendation;Frontiers of Computer Science;2023-12-28
4. A survey on fairness-aware recommender systems;Information Fusion;2023-12
5. FormerTime: Hierarchical Multi-Scale Representations for Multivariate Time Series Classification;Proceedings of the ACM Web Conference 2023;2023-04-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3